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Stein covers
for curved twistor spaces
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Abstract. We show that any curved twistor space has a naturally-definedStein
cover, theelementsof whichare indexedby thepointsof thetwistorspace. Weuse
this cover to give compactformulaefor the Penrosetransformandthe inverse
twistor functions, and to provide a broaderandlesssingular definitionof googly
twistor spacesthanpreviouslyavailable.

1. INTRODUCTION

A space-timeis a four-dimensionalmanifold with a Lorentzianmetric. The
metric satisfiesthe Einsteinvacuumequationsif its Ricci curvaturevanishes.In

this case, the Bianchi identities satisfiedby the Riemanntensor,whenwritten
in spinor notation,formally resemblethelinear equationssatisfiedby a massless
field of helicity two.

Motivated by this and a hope of interpreting the curvaturespinor field in
quantum theory, Penroseconsideredthe condition for the field to be purely

circularly polarized, which turns out to be the requirementthat the Riemann

tensor be (anti-) self-dual. Such a space-timehe calleda non-lineargraviton. In
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fact, the algebraic requirementof (anti-) self-duality implies, for a Lorentzian

metric, that the curvature tensor is complex, and thus non-linear gravitonsare

complexmanifolds with metricswhicharenon-degeneratesymmetricholomorphic

formson theholomorphicvectors.

With somemild provisos, there is a one-to-onecorrespondencebetweennon-

linear g-avitons andcurved twistor spaces,which arethree-complexdimensional

manifolds which fibre over the Riemann sphere (and have some additional

structures)[14]. Thus space-timeswith (anti-) self-dual curvaturecan be studied

by meansof their twistor spaces,and it turns out that the local metric geometry

of thespace-timeis codedin theglobal analytic geometryof the twistor spaces.

One therefore wishes, in order to describethe space-time,to have tools with

which to study theholomorphicgeometryof the twistor space.

In this paper, we show that the twistor spacehasa natural Stein cover. The

elementsof this cover areindexedby the points in thetwistor space,so thecover

hasitself thestructureof a complexmanifold. We glve two applications.

The first is to the Penrosetransform, which establishesisomorphismsbetween

analytic first cohomology groups on twistor spaceand spacesof masslessfields

on space-time[3]. If the cohomology classesare representedby ~ech cocycles

with respect to the cover, theseisomorphismsand their inversesare given by

simple integral formulae. Versionsof theseformulae havebeenknown for some

time — indeed, they preceededthe cohomologlcal results but without the
proper choice of covermany of them are too awkward to use for any but local

(in space-time)computations[4. 13].
The second application is to the theory of googly twistor spaces.Twistors

have a sort of handedness,andproperly speakingone distinguishesbetweendual

twistors and twistors. The non-lineargraviton-curvedtwistor space,or leg-break,

correspondencelinks space-timeswith anti-self-dual curvatureto twistor spaces,

and space-timeswith self-dual curvatureto dual twistor spaces.The googly pro-

blem is to describeanti-self-dualcurvatureswith dual twistor spacesandself-dual

curvatures with twistor spaces.The solution of this problem would hopefully

bring us a step closer to the twistor descriptionof space-timeswith non-self-dual

curvatures.This is oneof themain goalsof twistor theory.

The most popular current program requiresthat the googly twistor spacebe

constructedfrom the asymptotic structure of the space-time[10, 15]. Despite

somesuggestivepartial results, this projecthasbeenfrustrated by the lack of a

good enoughunderstandingof what these asymptoticsshould be. Too, naively

at least, it seemsodd that oneshould have to considerthe global propertiesof

space-timefor the googly, when the leg-breakcan be accomplishedlocally. The

Stein cover introduced here will be usedto provide a local definition of googly

twistor space (actually, a family of googly twistor spaces).It is also possibleto
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use the cover to give thegoogly maps,which give the googly descriptionof space-
time points. The definition we give is applicable to a broaderclassof space-times

than previousones. The techniquesintroducedhere are closely relatedto (and
generalize)thosefiguring in otherauthors’recentwork [11, 17, 19].

The organizationof this paperis as follows. The nextsectionreviewsthe non-
linear graviton-curvedtwistor spacecorrespondance,the sectionafter introduces

the Stein cover,and the last two sectionscover theapplicationsmentionedabove.
For generalbackgroundon twistors,see[3, 8,9, 13, 20, 21] andfor complex

manifolds [7, 12]. Forthe googly, see[5, 10, 15- 19].
Notation and conventions. Most of the assumptionsandnotationpeculiarto

this paperare introducedin section2. Generally,we follow PenroseandRindler

[21]. In particular,the abstractindex conventionis usedthroughout,so vectors,
spinors,etc. are representedby symbolswith indiceswhich do not takenumeric
values,but indicateto whichspacethe objectbelongs.

If V is a vector space or vector bundle,PV denotesthe associatedprojective

spaceor bundle.The fibre of a bundleE over b is denotedEb; thebundlerestricted
toa subsetUof the baseis denotedElu.

We work in the categoryof complex manifolds and holomorphicmaps;all

structuresconsideredwill be complex andholomorphic,and we omit sayingso
explicitly.

2. THE NON-LINEAR GRAVITON

We review here the non-lineargraviton [14]. Let (At’, g~~)be a complexspace-
time with anti-self-dualRiemanntensor.We denotethespin bundles,9”~,,

5PA’

(We assumethe space-timehasa spinstructure).
The anti-self-dualityof RObCd implies that thereis a local parallelimsof primed

spinors,i.e.c’IavbI~~C,= 0 for any XA~.We assume
(a) The local parallelism of primed spinorsextendsto a global parallelism.

Thus f/A’ ...#x ~A’ canonicallywhere~A’ C
2 isprimed spin space.

A secondconsequenceof the anti-self-duality is that self-dualtwo-planeele-
mentsarelocally integrableto two-surfaces.Wesuppose

(b) The local integrability of self-dual two-planeelementsextendsto a global

integrability,andthe spaceof thesetwo-surfacesis in fact a manifold.
Each self-dual two-surfaceZ is called an tv-surface;it is totally null andany

tangentvector is of the form ?V’ ir4 for somefixed covariantlyconstantspinor

7~.A’ called the tangent spinor of Z. The spaceof tx-surfacesis a three-dimensional
manifold .9, twistor space.When we think of Z as a point in 9 we call it atwistor.

Note that the <<tangent spinorv of Z is really a projective spinor. The map
.9 -+1’ S~4~givenby Z —~ lrA~as abovewill be denotedir.
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Eachx E .~Wdeterminesa projectiveline

L~=~ZE9JxEZ}

embeddedin 9. (There is one tx-surfacethrough x for eachtangentprojective
spinor at x). x, y ~,jj)f are null-separatediff they lie on a common tx-surfaceiff

meetsL5. We assume
(c) L~fl is empty or a singletonif x r~y;

this is analogousto requiring that there are no conjugatepoints. Then if Q,
R E9with Q=/rR, thereis at mostonexE~’with Q, R ELI.

Notation. For x, Q, R as above,weput XQR = x. We write XQR E .A” to mean
thereis x E Al with Q, R E L~.Z(x, IrA) is the tx-surfacethroughx with tangent

spinor irA.
Our lastassumptionsare
(d) Al is Stein, and
(e) Eachtv-surfaceis connectedandsimply-connected.

Remark. (a) - (e) hold locally, i.e. if x E Al, thereare alwaysneighborhoods

Al’ of x for which (a) - (e) hold on (Al’,g~~~).

There is a line bundle .9over9, whosefibre overZ is {irA E SA~I taken

projectively, rr~ is the tangentspinor to Z}. ~ is callednon -projective twistor

space. A non-projective twistor is thus an tx-surface togetherwith a choice of
scalefor its tangentspinor. The sheafof germsof functionswith valuesin

5~’,or
equivalentlyhomogeneousof degree— n in IrA, is denoted~7(_ n).

The resultson masslessfields are as follows. Let .~‘(s)be the spaceof massless

fields of helicity s on .A”. Then,under(a) - (e),

THEOREM (Eastwood,PenroseandWells [3]). Fors~>—1,

= H’(9, (9(— 2 — 2s)).

hi general,thereare no masslessfields of helicity <—1 [1, 2,21]. AMaxwelI
field on Al is a connectionon a line bundle over Al. The field is anti-self-dual

if its curvatureis.

THEOREM (Ward [23]; Eastwood,PenroseandWells [3]). The space of anti-self-
dual Maxwell fields on .# is isomorphic to H1(9, (9*)~If the curvatureof the

field is regarded as a helicity — 1 massless field ~~ABE ~(s), the cohomology
element is determined as the image of the exponential map

H1(9, (9)-~H’(P1, (9*)
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3. THE COVER

In this section,we describethe Steincoverof 9.

DEFINITION 3.1. For each A E 91, let

UA={ZE91—A IxAZEA(}.

Let ‘W={UAIAE9I}.

LEMMA 3.2. Let A E 91, and ~ be the primed projective tangent spin bundle
restricted to A minus the tangent section. Then UA is biholomorphic to ~.

Proof The biholomorphismis

Z~*(xAz,1r(Z)).

It is well-definedby condition(b). Theinverseis

(x, 1rA)~~*Z(x,irA).

THEOREM 33. QI is a Stein coverof91.

Proof First, we show is Stein. By the previousproposition,it is biholomor-
phic to d~.Now, i~4is biholomorphicto the product~ — {7rA}) x A, where

is the tangentspinor to A, by (a) of section2, i.e. to Q~x A. A is a closed
submanifold of the Stein manifold Al, henceA is Stein. Thus C x A is Stein,
andUA ~

Now, we show that ‘l?i covers9. For any Z E~ pickx E 91 on thea-surface

Z, andA EL~ withA s’~rZ. ThenZE~
1A~ .

Remark. If one only assumesthe Weyl tensorof (Al, g~~)is anti-self-dual,the

self-dual two-plane elementsare still locally integrableand so a twistor space
9exists.ReplacingAl by an opensubmanifoldif necessary,this spaceis a three-

dimensionalmanifold with all the structuresassumedaboveexceptthe fibration

-÷ “~A (indeed,since when Ricci curvatureis presenttherewill not beevena
local parallelism of primed spinors,~~A’ doesnot exist).One can still form the
cover QI andit is Stein if the secondBetti numberof eachA vanishes,although
the argumentneededto prove this is moresophisticated.In outline, it is this:
UA is biholomorphic to ~ as before,but ~ hasno obviousproductstructure.

Instead,~ is a IT-bundle overA with structuregroup G the affine groupof C.
Thus ~Bis classifiedby an elementof H1(A,~),where f~is thesheafof germsof

holomorphicfunctions with valuesin G. G is an extensionof C by cI~’,anda little
diagram-chasingshowsH1(A, ~) = H1(A, (9*) = H2(A, 7L)
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4. MASSLESS FIELDS

In this section, we treat the representationof analyticfirst cohomologyele-

mentsby tech cocyclesrelative to ~1. Suchcohomologyelementsare known to

correspondto masslessfields on (Al, ga):

THEOREM (Eastwood,Penroseand Wells). There is, for s ~v — I, an isomorphism

H1(9, (9(— 2— 2s))—*

This map is essentiallyrestriction to the line L~at which the field is to be
evaluated,followed by the isomorphismof Serre duality [22] (if s = — or — I,

the restrictionis actually to a formal neighborhoodof Lx). It can thusbe repre-
sentedby a simple contourintegral overL~of any Cechrepresentative.

The inversemap has beenmore awkward to describe.A Cechrepresentative
for the cohomology elementcorrespondingto a givenspace-timefield is called
an inverse tis’istor function. Formulae for inversetwistor functionshave been

given <locally>>, for neighborhoodsof L~of the form U

1 U U2, but this restric-
tion has limited their usefulness.We show here that the cover 4~’is naturally

adaptedto theseformulae.
As corollaries of these results, we show that the elementsof the cocycles

relative to QI can be chosento vary holomorphically with the elementsof ~/1.

In the cases = — I, the masslessfield is an anti-self-dualelectromagneticfield,
and the holomorphically-varyingcocycles encodethe integral geometryof the

gaugefield. Forsimplicity, we shall assumeAl is simply-connected.

Let E ~(— 1). The assumptionthat Al is simply-connectedimplies the
existenceof a potential I~suchthat

VA(A~AB) =0, VA(A~Th ~AB

is determinedonly up to the additionof a gradient;we shall supposesome
definite choice to have beenmade. It may be interpretedas a connectionone-

form on a line bundle overAl. Then ~ABeAB.,i5 the curvatureof the connection.

The freedomin choosing I~is exactly the freedomin fibre coordinatizationof
theline bundle.A similar constructionappliesto Yang-Mills fields.

Define a Cech 1-cochainwith respectto ~uIbyf=~fAB A,BE ,9},

IxBZ

fAB(Z)=) 4~~a (I)
XA Z

where the path of integrationlies alongthe tv-surfaceZ. The homotopy classof

this path is well-defined for Z E UA ~ bB. for then x~, x~ arepoints on the



STEIN COVERS FOR CURVED TWISTOR SPACES 267

a-surfaceZ, andthis is connectedandsimply-connected.Theintegral is unchanged
by deformationsof the path,since

d(4~. dX~~))Zf.d = VAA~FBB thA~ A

— v ~R thAA’ ~BB’ —0_~�AB R(A’ B’) A —

(The surfaceelementof Z is proportionalto ira, TB, henceonly the term sym-

metric in A’, B’ survives). Since XAB, XBZ very holomorphicallywith Z, fAB(Z)

is holomorphic.Further

(XAZ

JBA(Z)_) ~a~
1BA~’ (2)

XBZ

[X~Z

1XCZ (XCZ

f~(Z)+fB~z)=(j +J )~a~=) ~o~~°=fAc(Z).

XAZ XBZ XAZ

Thusfis a 1-cocycle.
Wenow turn to the interpretationof ‘I~as a gaugefield. DenotebyE the line

bundle over Al on which it is a connection.The anti-self-dualityof the curvature

ØABCAB implies that it vanisheson each tv-surfaceZ. SinceZ is connectedand
simply-connected,the gaugefield is trivial on Z. Thuswe may form a line bundle

over9, whosefibre over Z is the spaceof fields on Z with valuesin E which

are gauge-covanantlyconstanton Z. We choosea fibre coordinate~A on as
follows. For ~ E ~ , let

= valueof the field ~at thepoint XAZ.

Then the transition function from to over UA fl UB is expf~(Z),since

this is the parallel-propagationoperatorfrom x~ to XBZ. The usualanalysisof
the Ward constructionthen showscbAB is the field derivedfromf by the isomor-

phism of Eastwood,PenroseandWells.

To summarize,we havethe foil owing:

THEOREM 4.1. For any cohomologyeleinentfElf’(91, &),there existsa cocycle

f = {f~ representingf which varies holomorphically with A, B. For the line
bundle S on 91 representingthe gaugefield, there is a fibre coordinate over
UA varying holomorphically with A for which the transitiOn functionsare

~expfAB}. •
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For higherhelicities,onehassimilar results.

THEOREM 4.2. Let f E H 1(91 (9(—2 — 2s)) where s ~‘ — ~. Then there is a cocy-

c/c f {
1AB } representingfan dvaryingholomorphically with A, B.

Proof. We shall give explicit formulaefor the cocycles.Let the space-timefield

correspondingto f be ~A (if s = — ~ or 4~ ~ (2s indices, if s > — ~ Define

acocyclef={fAB} by

fXBZ 1

fAB = (ii ~)—l~ cj~CC if S ~——; (3a)
XA Z

f(xBz,n(B))

(T.E)_2_2s(~B,Vcc,~dx~’ +(2s+ 1)~ d~)
{xAz,7r(A)) (3b)

wherec~=cbAC.~’ ...~‘ifs>—-~.

The path of integrationin (3a) is the sameas that in (1) above.For (3b), it is

any lift of that path to p/
13A’ such that ~. ir ~ ~ = ir(A) at the initial point

and ~A’ = ir(B) at the final point. Weremark(a) In the first formula, sincedx1M

is proportional to ir~,,the integrandis in fact independentof ~, (b) If the
secondpath is regardedas a path in 9, it runs from A to B, (c) Since the spin
bundle (minus its tangentsection)is topologicallya trivial bundleover Z, thereis,
up to homotopy,only one path for the secondintegral, (d) A straightforward

calculationshows that the integrandsare closedforms;we omit this, (e)f satisfies
the cochainandcocycleconditionsasabove(equation2).

We must now show that the cocycles defined here are indeed the onescor-

respondingto the space-timefields in the integrandsunder the isomorphismof

[31.Considerfirst the case s > — Then the isomorphismis definedby Serre
dualityas

f_~~fIL~ATE H
1(LX, &(— 2— 2s)® &2) = (H°(L~,(9(2s))*

where L~ir= lr~,dirA and 12 is the sheafof germsof holomorphicI -forms on L~.

it will thussufficient to computef IL

Note that O/j = {UA fl L~}is a refi~ementof ~ = {L~—{A~IA EL~},the
element 11A fl L~being included in — {B~where ir(A) = ir(B). Sincealso

c ~ we may computethe cohomology of L~using the cover ~. if
A, B C L~with ir(A )= txA, ir(B) ‘= 6A’ then
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fAB = (2s + 1) f~’(~.2_2S~(x)~

a a ~‘

— ... — I ~
a7rA~ air~ j

aA’

a a a~13
= ( l)2S(2s!)_IØ — ... — ______

aIrA~ air~. a.irj3.ir

The field evaluatedfrom this cohomologyclassis

(2~)_1ffABIrA ~

where there are 2s ir’s and the contourseparatesA andB andsurroundsAin the

positivesense.Integratingby parts,we get

IA’... ~(x).

Thusfdoesindeedrepresentthe cohomologyelementcorrespondingto

Clearly,it variesholomorphicallywith A andB.
For s = — ~- , a similar argumentapplies,but oneworks on the first formal

neighborhoodof L~.Weomit the details,which are outlinedin [6]. .

Remark. For s ~‘ — ~-, our formulae give preferred~ech representativesfor the
cohomologyclasses.It is nothard to seethat theseare characterizedas thosefor

which f~(Z)is independentof Z whenZ EL~ (wheredefined).Fors= 0, we
get a preferredrepresentativefor any choiceof f~brecoordinatization.

Theseconstructionsleadone to considera particularseriesof manifolds.Note

that thereis a double fibration/
Al 91

where p is the defining projection and Z is as in section 2. Form the pull-back
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and let F0 = F~-the diagonal. Then a 0-cochainf = {f~}which variesholo-

morphicallywith A is simply a function on F0. Define F1 as the pull-back

F1 NNN F0

N9~
A 1-cochainf = {f~~}which varies holomorphically with A, B is an antisyni-
metric function on F1. Similarly, one can form F~ = F~ 1x~1F0,andstudy the

cohomology of the complex (9(F,) (with the obvious coboundarymaps).This

has somethingof the flavor of Alexander-Spaniercohomology. We shall not
pursuethis here,and only remark that an analogof this complex canbe usedto

computethegoogly cohoinology groups introducedin [5].

5. GOOGLY TWISTOR SPACE

Thegoogly problemis to specify a googly twistor space9* (of twistors with

the opposite handednessto those in 9) and data on it from which one can
recover a space-timewith anti-self-dualcurvature.As a first stepto solving this,
one turns the questionaroundandaskshow to define9* anddataon it from an
anti-self-dual (Al, g0~).The data we are concernedwith here are the <<googly

maps>>,which representthe pointsof Al.
In outline, the constructionof 9* and the googly maps in this [15]. Require

(Al, g~~)to be asymptoticallyflat in a suitablesense,sothat a portionof complex
infinity .jVexists.The asymptoticsof (.~g~~)mustbesuchthat ~4f is asubspace

of the light-cone of a point i E.A’. Then ,f = .iV — ~i} is biholomorphicto a

subsetof ~tP1 x ~IP1 x C = {(lrA, ~A u)}. The projectivespinorshereare taken
relative tot and if a null raytendsto a point (TA., ~A u)E 5, ~ ~A determines
its asymptoticdirection and u the ~<retardedtime>> at which it meets5. Theanti-

self-duality of the curvature then guaranteesthe existenceof a three-dimensional
family of null geodesicsin ‘

0A = constantsurfacesof S which in flat space-time
would be identified as the restrictionof theanti-self-dualtwo-surfacesto 5. This

spaceis (asymptotic)dual twistor space91* When we wish to emphasizethat we

are thinking of a dual twistor as a locus on 5, we call it a dual twistor line. Any
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x C Al determinesa googly map ~ : 9* -÷ PSA asfollows. Let CX be the inter-
sectionof the light-coneof x with 5. Thenany dual twistorline W meetsC, in a

point (irA, ~A’ u). We set ‘y~(FV)= IrA. The googly mapsare supposedto allow
one to recoverthe space-timefrom 9*~

There area numberof difficulties, long recognized,with this construction.One

is the lack of a satisfactoryunderstandingof what a complex asymptotically
flat space-timeshouldbe; without this, one cannotbe preciseaboutthe details.
If real space-timesare a guide, one expectsi to be singular, but theexactnature

of thesingularity is unclear.A seconddifficulty is that the structureof CX is more
complicated than in Minkowski space. In particular, in the examplesstudied

thus far, it meetsgenericdual twistor lines in more than onepoint, and thusthe
googly mapsare multi-valued. A further problem is the structureof 9*, Since
91* is a family of subspacesof Al, its topology dependson how theselines

i

____

/ / 7/

Figure 1. 5.
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embedglobally in Al. Fora sufficiently small neighborhood0 on 5, thestructure

inducedon the set 9(0)* of dual twistor linesmeeting0 is canonicallythe same
as that of a portionof flat dual twistor space= ~P3. Globally,however,91* can

acquirea non-Hausdorfftopology,and in fact this may be the genericcase.Since
the structureof 9(0)* is the sameas for Minkowski space,it seemsnecessaryto
use that inducedby all of ~41 to encodethe gravitational field. Again,in the abs-

ence of a clear understandingof the asymptoticsof the space-time,elucidating
this structureis difficult. Penrosehas suggestedblowingup a distinguishedtwo-
dimensionalsubspace(correspondingto the point 1) in ,~, the non-projective
version of 91*, asa way of resolvingthesingularity.This idearemainsspeculative,

butreceivessomeencouragementfrom thework describedin this section.
An attractive featureof the Steincover is that it can be usedto define googly

dual twistor spaceand googly mapswithout referenceto the asymptoticsof the
space-time.Actually, we constructa family of dual twistor spaces,one for each

A C 9. Thus the total space G of googly dual twistors fibres over .9. G may be
thoughtof as a <<blown up>> googly twistor space.If the asymptoticsof the space-

time are sufficiently nice, the point i correspondsto a line I = L1 C 91 and we
will show 9* C G

We begin with a nonlineargraviton (without points at infinity), and define

the dual twistorsrelative to A C 9. The key point is that has naturally the

structureof an openset in ~IP3. To seethis, first note that A may be identified
with a subsetof ~2 by the map

A ~‘~°A -verticalvectors= ~CP~—q~p~=

x -+ projectivetangenttoL~atA

where°A is thetangentspaceat A and<<vertical>> refers to the fibration 9-+PS~.
Thus A hasa naturalaffine structure,and it may be thoughtof as a subsetof an

tv-surfacein Minkowski space.The triviality of ~~
1’A over A allows this identifi-

cationto beextendedto theprojectivespin bundle.But then UA may beidentified
with a subset of the twistor space of Minkowski space,which is ITP

3. To sum-
marize,wehaveanembedding

UA~PA~(l~PI. (5)

We define

G~={W EP~4~’Jthe planeW C P,~meetsthe imageof UA},

the space of dual twistors relative to A. If (Al, ~ is a subspaceof Minkowski

space,there are canonical identifications among the various~A ‘s, anti among

theP~”s.
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The googly maps may now be defined. We first constructthe coveringspace

which is their domain.Fix x E 11 andlet

Q.A*={(W,Z)EGA x9IZEWnL~}

Thenthe googlymap is “yr Q~~~A’ givenby

(6)

An explicit coordinatizationfor the points in UA and GA may be obtained

as follows. Fix any point 0 E A, and a tangentspinor tvA. Then any point in
A is of the form exp0XA ce~’for some unique XA E ~ The coordinatesof a
twistor Z E UA relative to 0 are a pair of spinors (oY

t, irA) where ir~is the

tangentspinor to Z and wA = iXA cz~ir~
4whereexp0k’

4aA’ is the point common
to A and Z. (This coordinatizationis chosento agreewith the usual twistor

conventions.Note that (wA, irA) is homogeneousof degree+ I in zr~
4 actually

it specifiesa non-projectivetwistor. The projectivetwistor is specified by the
threeindependentratios of the components).An elementW of the dual projective

spaceis then specifiedby a dual pair of spinors~ p~
4),anddefinesthe plane

{(w’4, TA)I p~w + ir~~=0}. Z=(wA ,lrA)EUA andW=(pA,p’t’)EGA are

incident if p~w + ir’ p = 0. In particular,althoughstrictly A ~ UA , A is a limit
of points in UA and we say W = ~~A’ ~/1)E VA is incident toA ifa~p = 0. This
is what one obtains by taking the limit of the previousdefinition as Z -+ A.

Since A may be regardedas an tv-surfacein Minkowski space,the Minkowski-
spaceincidencerelationsfor twistorsand dual twistorshold on A. In particular,

the points on a null geodesicin A with tangentp~&~definea setof linesin
which rule the planeW = , 0) C UA. There is thus a one-to-onecorresponden-

ce between null geodesicsin A and dual twistors both relative to and incident

to A.
We now considerthe asymptoticdual twistor space.Suppose(Al, g~~)has

beencompletedwith }/, and 91 is the twistor spaceof the completedmanifold.
As noted above, the assumptionthat i is regular is unrealistic. The arguments
that follow can be alteredto allow the sorts of asymptoticbehaviorgenerally
consideredin work on the googly. We shall not give the detailshere (they are
easily supplied) in order to avoid a technical discussionof the asymptotics.

The point i correspondsto a line I C .9, the points of which may be identi-
fied with PSf~. (In order for the assumptionsof section 2 to be satisfied, it

may be necessaryto restrict (Al, g,~)to a neighborhoodof .iY, or of i E Al).

Then all of the preceedingargumentsapply, except the coordinatizations.In
particular,a null geodesiclying in anTIA = constantsurfaceon 5 is a dual twistor

relativeand incidentto thetwistor on I labelledby iy~~CP~.Thus
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PROPOSITION 5.1. Dual asymptotictwistor spacemay he identified as the subset
.9* = {(A, W) C G11 A is incident to W}.

The space G ~may be thoughtof as similar in spirit (andnearly identical)to
Penrose’sblown up IP’~’. It is straightforwardto checkthat the definition (6) of

the googly maps,restrictedto .9*, agreeswith the previousone.
It should be noted that a similar googly spacecan be definedby replacingi

with any other point. The only reasonfor choosingi is that it is distinguished.
Although the introduction of G doesnot lead to an obvioussolution of the

googly problem,thereare some encouragingsigns. First, thereis a non-singular

definition of the googly maps.Second,the projectivetangentbundleto 91, which

maybe thoughtof as a <<linearization>>of G, hasfeaturedin someproposedattacks
on the googly [11, 17]. Thereis also a close link with Penrose’srecentwork on
googliesand asymptoticlocal twistor transport [19]. The map (5) which embeds

in flat twistor spacecan also be definedby local twistor transportaroundA,

and similarly GA is a subsetof the space of sectionsof the bundle of dual local

twistors over A which are covariantly constantunder local twistor transport.
Third, G can be usedwith somesuccessto give a googly description of massless
fields (a googly Penrosetransform). The successis so far less than total because

no way hasbeenfoundto removereferenceto 9.
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